If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+5.6x-1.12=0
a = 1; b = 5.6; c = -1.12;
Δ = b2-4ac
Δ = 5.62-4·1·(-1.12)
Δ = 35.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5.6)-\sqrt{35.84}}{2*1}=\frac{-5.6-\sqrt{35.84}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5.6)+\sqrt{35.84}}{2*1}=\frac{-5.6+\sqrt{35.84}}{2} $
| b+16=16 | | 2x=3-x+9 | | 3+9x=9x-3 | | 4=w/4.6 | | 115+5x+5=180 | | 4x+9x-12x=9-5-3 | | 65+5x+5=180 | | X+(1/82)=x+1 | | z^2=z^2 | | 300=51×p | | -2x+11x=18 | | 65+3x+4=180 | | -2x+11x=8 | | 1(x-100)=35.75 | | (8x+2)+(13x+30)=180 | | 0.13y-0.6=0.083 | | 8=3v+20 | | 5/2+1/7t=5 | | 5u+2=27 | | 60x-12=6 | | 5=2/y | | 6x-18=18+38 | | -97.3+6.4x=13.9-7.5x | | X+17-4=2-x+6 | | -97.3+6.4=13.9-7.5x | | 11x+99=10x | | (9x-4)+(8x+2)=180 | | (13x+30)+(19x-11)=180 | | x/5=64 | | 2x+2.5x=180 | | (7x+50)=162 | | -7x+2x=-5(x+1/2) |